Exercise 2.2 - Class 10 Math Solutions
Q1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) x2 - 2x - 8
Zeroes by factorization: (x - 4)(x + 2)
Zeroes: x = 4, -2
Sum = 2, Product = -8 (Verified)
(ii) 4s2 - 4s + 1 = (2s - 1)2
Zeroes: s = 1/2, 1/2
Sum = 1, Product = 1/4 (Verified)
(iii) 6x2 - 3 - 7x = 6x2 - 7x - 3
Use quadratic formula
x = [7 ± sqrt(49 + 72)]/12 = [7 ± sqrt(121)]/12 = [7 ± 11]/12
x = 3/2, -1/3
Sum = 7/6, Product = -1/2 (Verified)
(iv) 4u2 + 8u = 4u(u + 2)
Zeroes: u = 0, -2
Sum = -2, Product = 0 (Verified)
(v) t2 - 15
Zeroes: ±sqrt(15)
Sum = 0, Product = -15 (Verified)
(vi) 3x2 - x - 4
Use quadratic formula: x = [1 ± sqrt(1 + 48)]/6 = [1 ± 7]/6
x = 4/3, -1
Sum = 1/3, Product = -4 (Verified)
Q2. Find a quadratic polynomial with the given numbers as the sum and product of its zeroes respectively.
(i) Zeroes: 1/4 and -1
Sum = -3/4, Product = -1/4
Polynomial: x2 + (3/4)x - 1/4
(ii) Zeroes: √2 and 1/3
Sum = √2 + 1/3, Product = √2/3
Polynomial: x2 - (√2 + 1/3)x + √2/3
(iii) Zeroes: 0 and √5
Sum = √5, Product = 0
Polynomial: x2 - √5x
(iv) Zeroes: 1 and 1
Sum = 2, Product = 1
Polynomial: x2 - 2x + 1
(v) Zeroes: -1/4 and 1/4
Sum = 0, Product = -1/16
Polynomial: x2 + 1/16
(vi) Zeroes: 4 and 1
Sum = 5, Product = 4
Polynomial: x2 - 5x + 4
अभ्यास 2.2 - कक्षा 10 गणित समाधान
प्रश्न 1: निम्नलिखित द्विघात बहुपदों के शून्य खोजिए और गुणांक एवं शून्यों के बीच संबंध सत्यापित कीजिए।
(i) x2 - 2x - 8
गुणनखंड: (x - 4)(x + 2)
शून्य: x = 4, -2
योग = 2, गुणनफल = -8 (सत्यापित)
(ii) 4s2 - 4s + 1 = (2s - 1)2
शून्य: s = 1/2, 1/2
योग = 1, गुणनफल = 1/4 (सत्यापित)
(iii) 6x2 - 3 - 7x = 6x2 - 7x - 3
समीकरण हल करें: x = [7 ± √(121)]/12 = [7 ± 11]/12
x = 3/2, -1/3
योग = 7/6, गुणनफल = -1/2 (सत्यापित)
(iv) 4u2 + 8u = 4u(u + 2)
शून्य: u = 0, -2
योग = -2, गुणनफल = 0 (सत्यापित)
(v) t2 - 15
शून्य: ±√15
योग = 0, गुणनफल = -15 (सत्यापित)
(vi) 3x2 - x - 4
x = [1 ± √(49)]/6 = [1 ± 7]/6
x = 4/3, -1
योग = 1/3, गुणनफल = -4 (सत्यापित)
प्रश्न 2: निम्नलिखित शून्यों के योग और गुणनफल के अनुसार द्विघात बहुपद बनाइए।
(i) शून्य: 1/4 और -1
योग = -3/4, गुणनफल = -1/4
बहुपद: x2 + (3/4)x - 1/4
(ii) शून्य: √2 और 1/3
योग = √2 + 1/3, गुणनफल = √2/3
बहुपद: x2 - (√2 + 1/3)x + √2/3
(iii) शून्य: 0 और √5
योग = √5, गुणनफल = 0
बहुपद: x2 - √5x
(iv) शून्य: 1 और 1
योग = 2, गुणनफल = 1
बहुपद: x2 - 2x + 1
(v) शून्य: -1/4 और 1/4
योग = 0, गुणनफल = -1/16
बहुपद: x2 + 1/16
(vi) शून्य: 4 और 1
योग = 5, गुणनफल = 4
बहुपद: x2 - 5x + 4
thank you for your feedback